
Web applications

Webapp Week

Sign-In:
https://da.gd/iewj

SIGN IN PLEASE :DDD

https://da.gd/iewj

The basics

3

Basic web stuff

Tools
Something here

Techniques &
Attacks
Something here

1 2

Agenda

4

Lab
Learn by doing

01

The Basics
Basic Web Stuff

Web Applications

Interactive web-pages

> Client (User) Interacts with frontend
> Public Facing

Applications that run on web servers

> Their purpose is to provide
service(s)
> Interact with the backend server

Virtual Hosts
Multiple Sites on a single server

A single computer can have multiple websites

More sites = more potential vulns

Common usage: subdomains

HTTP Requests

GET:
POST:

PUT:
DELETE:

HEAD:
OPTIONS:

Request a page
Send data back to a server
Upload a file to a server
Delete a file on a server
Request a page without its contents
Request allowed methods

Example GET Request

Example POST Request

HTTP Request Headers
Various properties of the HTTP Request

Common ones
Host
User-Agent
Cookie

Client & Server Side
Client Side executes on the client end, no server interaction

Javascript, HTML, CSS
Visible to client, usually focused on UI and aesthetic

Server Side is executed by the server
PHP, ASP(X), Python, Java, NodeJS, etc.
Dynamic page generation, hidden backend.

Tools

02

diamond

Wordlists
Passwords

/usr/share/wordlists/rockyou.txt
/usr/share/seclists/Passwords/xato-net-10-million-passwords.txt

Directories
/usr/share/wordlists/dirb/big.txt
/usr/share/wordlists/dirb/common.txt
/usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt

Virtual Hosts/Subdomains
/usr/share/seclists/Discovery/DNS/subdomains-top1million-110000.txt

Inspect Element

Burp Suite

Feroxbuster & Gobuster
Directory Brute force

Find directories or other endpoints
feroxbuster -u <url> -w <path to wordlist> -x <extensions>

Vhost Brute force
Find subdomains/virtual hosts
gobuster -u <url> -w <path to wordlist>

Techniques & Attacks

03

Intercepting HTTP Requests

GET /123

200 OK

POST /abc

200 OK

Most popular web proxies:

Burp SuiteOWASP ZAP

SQL Injection

TLDR: SQLi is crafting malicious backend SQL statements by hijacking
the original statement

https://rsecke.github.io/products?category=Gifts
└── SELECT * FROM products WHERE category = 'Gifts' AND released = 1

Application makes a SQL query to a
database

How can we exploit this with SQLi?

SQLi Example

https://rsecke.github.io/products?category=Gifts'+OR+1=1--

SELECT * FROM products WHERE category = 'Gifts' OR 1=1--' AND released = 1

 ‘ : ends the ‘Gifts’ part of the SQL statement

OR 1=1: is a boolean statement (TRUE / FALSE)

--: comments the rest of the SQL statement

Consider POST parameters too!

Command Injection
TLDR: Command injection is a way for an attacker to execute
commands

https://rsecke.github.io/stockStatus?productID=381&storeID=29

The application runs stockreport.pl 381 29 to get information. It
takes 2 values

How can we exploit this with command injection?

 w
ho

am
i

Command Injection Example
Burp Suite shows a POST request is made back to the server to
retrieve information for the user

POST /product/stock HTTP/1.1
Host: ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net
Cookie: session=MdoDfpFUZy4K0ZE592FvElYyHtN2srcq
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referrer: https://ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net/product?productId=6
Content-Type: application/x-www-form-urlencoded
Origin: https://ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net
Content-Length: 21
Te: trailers
Connection: close

productId=6&storeId=1

Command Injection Example
Burp Suite shows a POST request is made back to the server to
retrieve information for the user

POST /product/stock HTTP/1.1
Host: ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net
Cookie: session=MdoDfpFUZy4K0ZE592FvElYyHtN2srcq
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referrer: https://ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net/product?productId=6
Content-Type: application/x-www-form-urlencoded
Origin: https://ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net
Content-Length: 21
Te: trailers
Connection: close

productId=6&storeId=1;ping -c 2 x.x.x.x

Cross Site Scripting
TLDR: XSS executes javascript on the client end.

https://rsecke.github.io/comments

The application stores comments written on the page

How can we exploit this with XSS?

Cross Site Scripting Example

Server Side Template Injection

SSTI is an abuse of the backend template language to obtain
code execution

Examples: Jinja2 (Python) & Twig (Java)

https://rsecke.github.io/comments

How can we exploit this with SSTI?

The same previous application, but it is a Flask application

SSTI Example
POST /comments HTTP/1.1
Host: ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net
Cookie: session=MdoDfpFUZy4K0ZE592FvElYyHtN2srcq
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referrer: https://ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net/product?productId=6
Content-Type: application/x-www-form-urlencoded
Origin: https://ac0a1fd91e68a2b0c0139282006d00ff.web-security-academy.net
Content-Length: 21
Te: trailers
Connection: close

comment={{7*7}}

If 49 shows up as the comment => https://github.com/payloadbox/ssti-payloads

What is Server Side Request
Forgery (SSRF)?

SSRF is a request made on the server’s behalf that allows an
attacker to view an application’s resources

https://rsecke.github.io/admin
└── ADMIN ACCESS ONLY

How can we exploit this with SSRF?

Admin interface only available if logged in as an
administrator, or if requested from loopback

Web request will access a site

stockApi=
http://localhost/admin

Bypassed access controls and exploited trusted
website to gain access to the admin console

stockApi=<web request>

How Can We Exploit SSRF?

Normal POST Request:

Modifying the Server Side Request:

LFI/RFI

LFI/RFI occurs when a web application insecurely loads some of
its objects (ie: a page)

https://rsecke.github.io/index?page=home.php

How can we exploit this with LFI/RFI?

Index page uses a GET parameter to load some of its
content

LFI/RFI example

https://rsecke.github.io/index?page=home.php

 ? : Indicates the next word is a GET parameter

page: name of the parameter

home.php: value of the page parameter

Consider POST parameters too!

RFI, set the value to a file over a network (ie: http:// or UNC \\host\share\)

Insecure Access Controls

Parameter-Based Access
Methods
└── User rights determined at login
 admin:0

Referer-Based Access Control
└── Authorization based on previous site
 covertops.xyz/admin
 covertops.xyz/admin/deleteUser

Insecure Direct Object References
└── Occurs when user-input is used to
 determine which objects to access

 dairyking.com/cservice_logs/log213.txt

Non-Standard HTTP Headers
└── X-Original-URL and X-Rewrite-URL
 to overwrite URL restrictions

DENY: POST, /admin/deleteUser, Users
POST / HTTP/1.1
X-Original-URL: /admin/deleteUser

Lab Time

04

Learn by doing

Lab Instructions

Load the VPN
Access https://elsa.sdc.cpp
Access your Kali VM

kali:kali

Perform an assessment on the web application running on
192.168.1.2:5000. Note as many findings as you can. The goal is not to
obtain a shell, but to note the web vulnerabilities that you find. Create a
finding block for each vulnerability that you encounter.

This is apart of the homework

Ask, probably

Got questions?

