You like Networking?

Yes. You will love it.

Sign in :3

https://da.gd/KAVhb

whoami

Evan Deters

3rd Year CIS

ISSE

CCDC

Captain

Networking

Windows

CPTC

Moral Supporter

2023-Present

2022-2023

2021-2022

2021-Present

whoami

Marshall Ung | Shadowclaw

3rd Year CE

CCDC

Alternate Threat Hunter 2022-2023 Threat Hunter 2023

CPTC

Alternate Team Member 2022 Team Member 2023

Whoami

Dylan Tran

3rd Year CIS

Intern @ X-Force Red

CCDC

Linux Team 2021-2023

Linux Lead 2023-202?

CPTC

Team Member 2021-2023 Captain 2023-2024

whoami

- jessica leung | @jeSSH
- CCDC business monkey
 - ex-windwos team
- co-head honcho @ SWIFT
- pentest @ Visa

Agenda

1

Intro to Networking

4

Firewalls!

2

Competition Networking

5

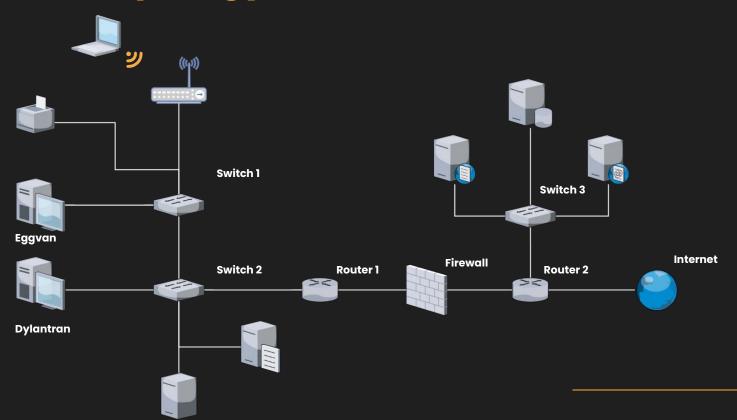
OSI Model

3

Client Server Model

6

Lab


Intro to Networking

LET'S DO SOME NETWORKING.

Alright then, let's do some networking

Basic Topology

Network Devices

Anything on the network

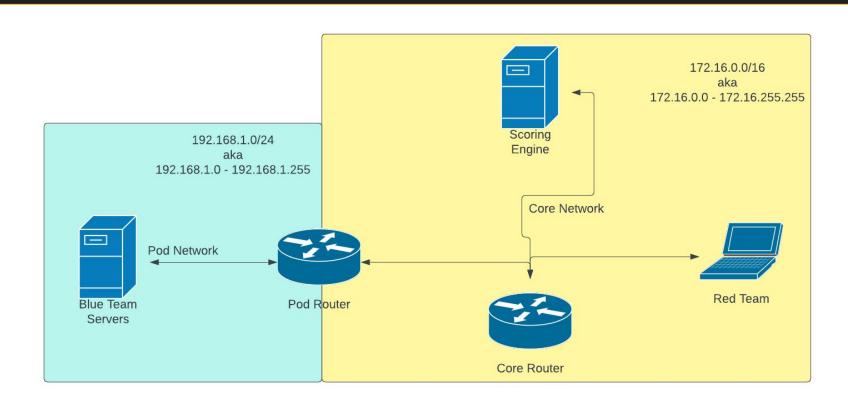
- Computers, phones, routers, switches, etc.
- Contains at least one **Network Interface Card,** or **NIC**
 - Wired
 - Wireless

Lingo

- IP Address
- Subnet Mask
- Router
- DefaultGateway
- Service

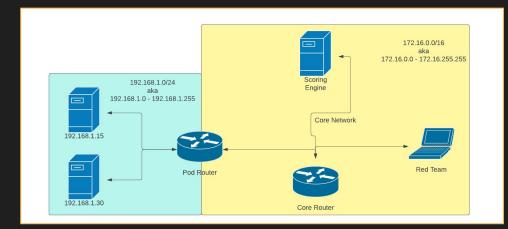
- Protocol
- Port
- Interface
- Firewall

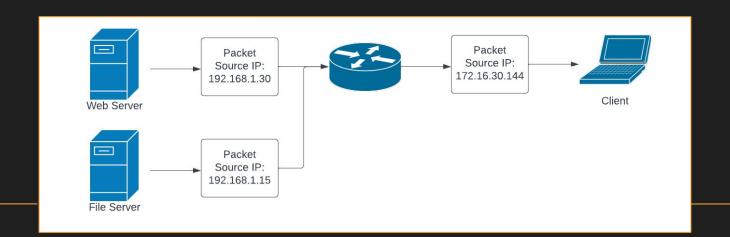
Subnet Masks



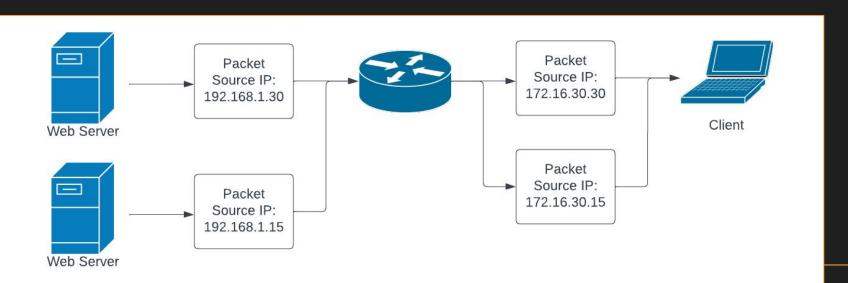
2

Competition Networking


Networking Makes the Services go Round

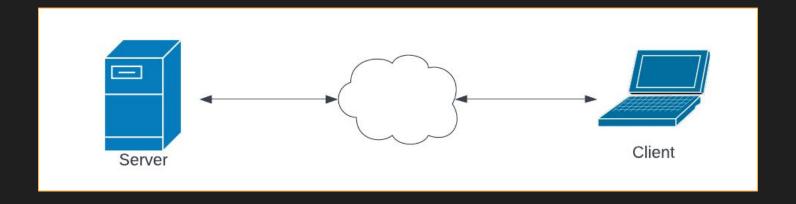

Competition Topology

NAT


- Network Address Translation
- Built to conserve IP addresses
 - One-to-Many Translation

1:1 NAT

- Direct Translations
- $192.168.1.0/24 \rightarrow 172.16.30.0/24$



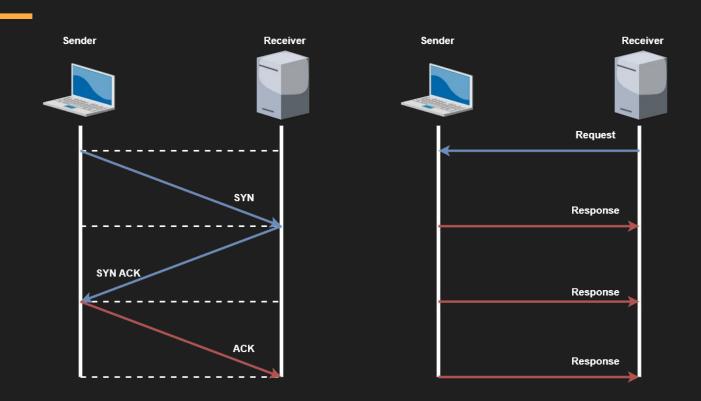
3

Client-Server Model

A Restaurant, but for Packets

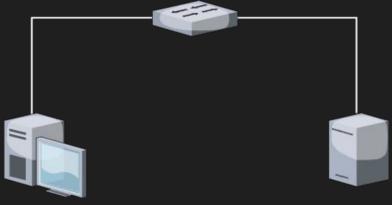
Client-Server Model

What are ports?


Numbers that identify specific running services on a machine

- Common port numbers
 - TCP 20 and 21 FTP
 - TCP 22 SSH
 - o TCP 25 SMTP
 - UDP 53 DNS
 - o TCP 80 HTTP
 - TCP 443 HTTPS
 - o etc.

TCP and UDP


- TCP Slow but reliable
 - Synchronization
 - Flow control
 - TCP Handshake
- UDP Fast but unreliable
 - No error-checking
 - No acknowledgements
 - Just send data

TCP and UDP

What are sockets?

Each end of a connection, basically a pairing between an IP and a port.

IP: 192.168.1.10 MAC: AA:AA:AA:AA:AA IP: 192.168.1.58 MAC: EE:EE:EE:EE:EE

192.168.1.10:57138

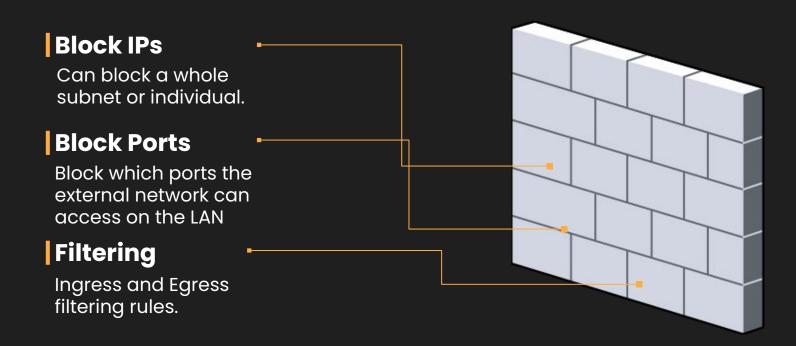
192.168.1.58:80

why

Identify normal/abnormal traffic

- Is it coming from scoring engine/orange team? Or is it red team? Troubleshooting services
 - Firewall issue? Service disabled?

C:\Windo	ws\System32>netstat	-ano		
Active C	onnections			
Proto	Local Address	Foreign Address	State	PID
TCP	0.0.0.0:135	0.0.0.0:0	LISTENING	1372
TCP	0.0.0.0:445	0.0.0.0:0	LISTENING	4
TCP	0.0.0.0:902	0.0.0.0:0	LISTENING	4868
TCP	0.0.0.0:912	0.0.0.0:0	LISTENING	4868


Ports & Services Review

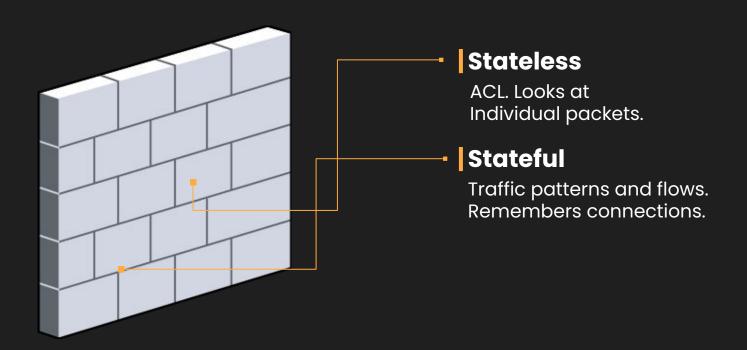
- TCP and UDP
- Ports numbers that identify a running service/application
- Common ports
- Source and destination addresses/ports
 - Ephemeral ports on client-side
 - Sockets

4

Firewalls

FIREWALL TIME BABEYY

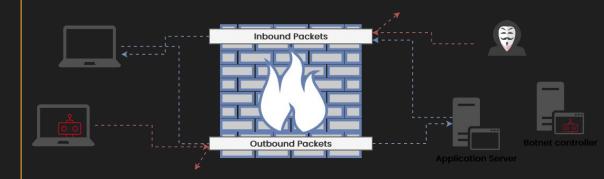
NGFW vs Traditional



- Stateful Inspection on incoming and outgoing traffic
- Comprehensive application control and visibility
- Easy to install, configure, integrate security tools, reducing administrative controls
- SSL traffic can be decrypted and inspected.
- IPS & IDS are integrated

- Stateful Inspection on incoming and outgoing traffic
- Partial application control and visibility only
- Managing security tools separately is \$\$\$
- Cannot decrypt and inspect SSL traffic
- Integrated IPS and IDS are deployed separately in traditional firewalls

Stateless vs Stateful


FW Example

Inbound

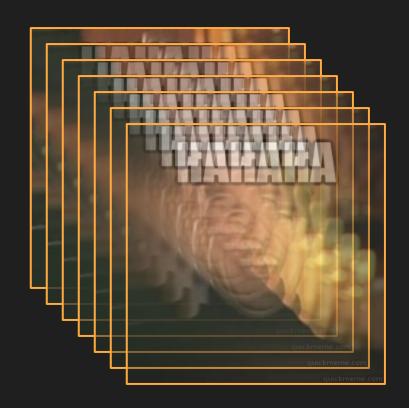
- Only allow required services
- Allow certain subnets
- Allow certain ip addresses

Outbound

 Block everything going outbound (break internet)

WAN Firewall

Ru	les (Dra	g to Change	Order)									
		States	Protocol	Source	Port	Destination	Port	Gateway	Queue	Schedule	Description	Actions
	✓ {≡	21 /80 KiB	IPv4 *	172.16.109.39	*	*	*	*	none			₺ 🖋 🗆 🛇 🛅


LAN Firewall

WAN Floating LAN Rules (Drag to Change Order) States Protocol Source Destination Gateway Queue Schedule Description Actions * 0 /3.83 MiB LAN Address Anti-Lockout Rule 443 80 \$ 0 0 0 m 0 /0 B IPv4* none \$ / DOM Default allow LAN to any rule 3 /2.07 GiB IPv4 * LAN net none 3 / O O TO 0 /0 B IPv6 * LAN net Default allow LAN IPv6 to any rule none

Firewall Demo

5 OSI Model

no

6 Lab

Thanks!

Any questions? Questions are very cool. Please ask questions I am very lonely :((